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Algebraic Motion Approximation 
With NURBS IVIotions and Its 
Application to Spherical 
Mechanism Synthesis 
In this work we bring together classical mechanism theory with recent works in the area 
of Computer Aided Geometric Design (CAGD) of rational motions as well as curve 
approximation techniques in CAGD to study the problem of mechanism motion approx
imation from a computational geometric viewpoint. We present a framework for approx
imating algebraic motions of spherical mechanisms with rational B-Spline spherical 
motions. Algebraic spherical motions and rational B-spline spherical motions are repre
sented as algebraic curves and rational B-Spline curves in the space of quaternions (or 
the image space). Thus the problem of motion approximation is transformed into a curve 
approximation problem, where concepts and techniques in the field of Computer Aided 
Geometric Design and Computational Geometry may be applied. An example is included 
at the end to show how a NURBS motion can be used for synthesizing spherical four-bar 
linkages. 

1 Introduction 

Non-Uniform Rational B-Splines, commonly referred to as 
NURBS, have become the de facto industry standard for the 
representation, design, and data exchange of geometric informa
tion processed by computers. Recently, it has become apparent that 
NURBS geometry can be extended to kinematic domain for syn
thesizing NURBS motions of rigid bodies in Euclidean three-space 
(Barr et al., 1992; Ge and Ravani, 1994; Juttler, 1994; Juttler and 
Wagner, 1996; Ge and Kang, 1996; Ge et al, 1997; Ramamoorthi 
and Barr, 1997). The purpose of the present paper is to present a 
framework for algebraic motion approximation using spherical 
NURBS motion by combining NURBS geometry with kinematic 
geometry of spherical mechanisms. From the viewpoint of mech
anism synthesis, the ideas presented in this paper are extensions of 
the work of Gupta and Roth (1975) on kinematic approximation of 
circles and straight lines, the series of work of Ravani and Roth 
(1983, 1984), Bodduluri and McCarthy (1992), Ge and Ravani 
(1993), Larochelle and McCarthy (1994) on algebraic motion 
synthesis using kinematic mapping, as well as the work of Liu and 
Angeles (1992a, 1992b) on planning global properties of a mech
anism motion for optimization of function generating mechanisms. 

The paper is organized as follows. Section 1 reviews how 
spherical displacements can also be represented projectively using 
quaternions. Section 2 presents spherical rational B6zier and 
B-spline motions as B6zier and B-spline quaternion curves. Sec
tion 3 presents algebraic motions of spherical mechanisms. Section 
4 discusses three motion approximation problems and presents an 
example to demonstrate the feasibility of our approach. 

2 Spherical Displacements 

Quaternion algebra allows for an elegant treatment for spherical 
kinematics (Yang and Freudenstein, 1964; Ravani and Roth, 1984; 
Bottema and Roth, 1990; McCarthy, 1990). A quaternion is a 
hypercomplex number of the form q = 5 i i - l - 5 2 J + 93k + ^4 
where i, j , k are quaternion units. The components q, can be 
associated with the Euler parameters of a rotation as 
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?i = Si S i n - , ?2 = ^2 Sin 2 , 

^3 = J3 sin 2 , 94 = cos - , (1) 

where s = (si, s^, s^) is the unit vector along the axis of rotation 
and 6 is the angle of rotation. Note that the Euler parameters satisfy 
the condition 

q] + ql + ql + ql = (2) 

and the corresponding quaternion is called a unit quaternion. In 
general, however, one can define a non-unit quaternion using the 
homogeneous Euler parameters, Q = {Q,, Q2, Q3, Qt), where 
Qi = vqi with i; > 0. 

Let the location of a point in Euclidean three-space E^ before 
and after a spherical displacement be represented by homogeneous 
Cartesian vectors p = (p,, p2, P3, Pt) and p = (pi, pi, p^, pt), 
respectively. These homogeneous vectors define points in projec
tive three-space P^. One can associate these vectors with quater
nions as well, which maybe referred to as point quaternions. The 
point coordinate transformation under a spherical displacement 
can be represented by the following quaternion product: 

P = QpQ* (3) 

where Q* denotes the conjugate of the rotation quaternion Q and 
p, p are point quaternions.' The quaternion representation can be 
recast in 4 X 4 matrix form as 

where 

P = [W(Q)]P 

[mQ)]-[Q"][e-] 

(4) 

with (see M c C a r t h y , 1990; G e , 1994) 

' Note that we use boldface letters to denote both quaternions and vectors. 
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(5) 

Two rotation quaternions, Q = t/q and q, represent one and the 
same rotation since 

WQ)] = [Hivq)] = v\H(q)]. 

The scalar v can thus be considered as a weighting factor for the 
rotation. Ravani and Roth (1984) considered the homogeneous 
Euler parameters Q = wq as defining a point in a projective 
three-space, called the image space (denoted as 2) of spherical 
kinematics. In this way, an algebraic curve in X corresponds to an 
algebraic motion and a rational curve in X corresponds to a rational 
motion. 

It is important to point out that although points in E^ as well as 
spherical displacements can be represented by points in projective 
three-space, the geometry of P ' is considered to be flat while the 
geometry of X is considered to be spherical or elliptic. For exam
ple, the distance between two points Q, and Q,+i in X is defined as 
the angle between the two lines defined by Q, and Q,+ ,, see 
Martinez and Duffy (1995) and Larochelle and McCarthy (1996). 

3 Spherical NURBS Motions 
Rational Bezier and B-spline curves, also known as NURBS^ 

are standard topics in the field of Computer Aided Geometric 
Design (Farin, 1993). In this section, we consider the problem of 
defining a spherical motion such that its point trajectory is a 
spherical NURBS curve. The resulting motion is called a spherical 
NURBS motion. We first consider the case of rational B6zier 
spherical motions. We then discuss how the result can be extended 
to rational B-spline spherical motions. 

Given a sequence of unit quaternions q, as well as associated 
weights Vi > 0, one can construct homogeneous quaternions by 
Q, = y,q,. In order to take care of the problem that both q, and 
—q, correspond to the same spherical displacement, we choose the 

4 

sign of q, such that 2 ^/.j^.+ ij — 0 where qij (j = 1, 2, 3, 4) 

denote the components of the quaternion q,. A Bezier quater
nion curve of degree n is given by 

Q"(f) = E 5?WQ,' (6) 

The quaternions Q, are here referred to as Bezier control quater
nions. The Bezier polygon defined by the Bezier quaternions is an 
intrinsic control structure for the resulting motion. The control 
structure corresponds to a piecewise rotational motion.^ 

After substituting (6) into (3), we obtain the point trajectory of 
the corresponding motion as 

p'"(0 = E I] 5?(')s;(0Q,pQ^ (7) 

The point trajectory can also be put in Bezier form as 

2n 

r-it) = E 5^(03, (8) 

^ Non-Uniform Rational B-Splines. 
' Each motion segment is a pure rotation about a fixed axis. 

where Bezier control points â  are 

1 
at = E C?C;Q,PQ* (9) 

and C" are binomial coefficients. Thus a Bezier quaternion curve 
of degree n defines a rational Bezier spherical motion of degree 
2n, for its point trajectories are rational B6zier curves of degree 
2n. 

Writing the B6zier control points â  in matrix form, we obtain 

a* = [H,]v (10) 

where 

{»,-] =-^„ S c?c;[2r][27]. (11) 
* i+j=k 

This leads to the following matrix representation of the rational 
Bezier motion as defined by the Bezier quaternion curve (6): 

[H'-m = X Bl\t){H,l (12) 

Thus the matrices [Ht\ may be referred to as Bezier control 
matrices. These matrices are in general not orthogonal and thus 
represent affine displacements. They define an afflne (or linear) 
control structure for the rational Bezier motion. The linear control 
structure for rational Bezier motions was first presented by Jiittler 
and Wagner (1996). The set of {In + 1 ) Bezier control matrices 
[Ht\ are deflned by (n -I- 1) Bezier control quaternions Q,. 

A nth degree B-spline quaternion curve is given by 

Q'"(o = S mmi. (13) 

with N1{t) being the B-spline basis. It is not difficult to show that 
the point trajectories of the resulting motion are rational B-spline 
spherical curves of degree 2n. Therefore a B-spline quaternion 
curve of degree n defines a rational Bezier spherical motion of 
degree In. In producing an example for this paper, we have 
utilized cubic B-spline quaternion curves which have a piecewise 
Bezier form. The standard algorithm for converting the deBoor 
points to the B6zier points is directly applicable to B-spline quater
nion curves. The algorithm can also be inverted for cubic rational 
B-spline interpolation. These algorithms can be found in CAGD 
texts such as Farin (1993) and Piegl and Tiller (1995). 

4 Algebraic Spherical Motions 

Let us consider a spherical motion of a moving body such that 
two points. PI and p j , of the body trace out two separate algebraic 
curves on the surface of a unit sphere in £^ These algebraic curves 
are given by the following algebraic equations: 

/,.(p,; r,) = 0, i = l , 2 . (14) 

where r, denote the coefficients or shape parameters of the alge
braic curve/, = 0. The equations/j = 0 are homogeneous in p,, 
i.e. we have/,(zp,) = z''//(Pi) where z is a nonzero scalar and ki 
is an integer. Substituting (4) into (14), we obtain the following 
two homogeneous equations in Q: 

^/(Q; P,-, r,) = 0, ; = 1,2 (15) 

Each of the two equations defines an algebraic surface in the image 
space X and represents the set of all possible spherical displace
ments that satisfy the algebraic constraint (14). The intersection of 
the two surfaces defines an algebraic quaternion curve in X. This 
algebraic quaternion curve corresponds to an algebraic spherical 
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motion such that any point of the moving body traces out an 
algebraic path. 

For instance, the quaternion curve representing a spherical four-
bar motion can be defined this way. Let p, = (p,.i, p . j , p,,3, p,.4) 
be the homogeneous vector representing the locations of the mov
ing pivots on the moving unit sphere, and let m, = (m, i, m,,2, m,,,, 
»jj,4) be homogeneous vector representing the locations of the 
fixed pivots on the fixed unit sphere. Let p, denote the angular 
lengths of the driving and driven links. The moving pivots are 
required to stay on circular paths, which are given by 

/, = AM'"/,I + P;,2mi,2 + Pu' t tu " P M ' ^ M cos p, = 0, 

/ = 1 , 2 . (16) 

The corresponding quaternion surfaces in 2 are given by the 
following homogeneous quadric equations 

Q^F,(p,., m,.)]Q = 0, ( = 1 , 2 , (17) 

where the coefficient matrices [F,(p,, m,)] are given by 

a sequence of points on the image curve of the four-bar motion and 
then estimate the normal distance from each point to the B-spline 
quaternion curve. Calculation of a sequence of points on an alge
braic curve is in general more difficult than that for a parametric 
curve due to the algebraic form as well as the topological structure 
(such as possible multiple branches and self intersections) of the 
algebraic curve (Amon, 1983). In the case of the image curve of a 
spherical mechanism's motion, the problem of calculating a se
quence of points on the curve is equivalent to the position analysis 
of the mechanism motion and can be solved using the loop-closure 
equations of the mechanism (see McCarthy, 1990). Once a se
quence of image points has been generated, one can take advantage 
of the convex-hull and subdivision property of a B-spline curve to 
develop reliable and efficient methods for estimating the error. 
Since the metric geometry of 2 is spherical, "flat" algorithms in 
CAGD for distance calculation have to be modified to take into 
account the geometry of 2. 

The solution to the first problem would provide an approximate 
piecewise rational parameterization for algebraic motions of a 

[f,l = Pi.2'"i.: + Pu"h.l 
PullI'l.t + Pl.l'ltiJ 
P,.2l":,, - Pi,mij 

I + PKZ"''.2 ~ /'i,3'"i,3 ~ PiA^iA COS p, 

Pijmi.2 + P u ' i u 

Pi3'>h.i + Pi.i"',.i 

' P'.2»ii.2 + Pi.il^i.H ~ PiA^hA COS Pi 

Pi.\'lh.2 ~ Pi.2"'iA Pi.: 

Pl.imia-Pi.2miJ 
1 + P i j m . j + Pij"'f.3 - Pi.tii'iA COS p,-

(18) 

The intersection of these two surfaces in 2 is the image curve of 
a spherical four-bar motion. The curve is a quartic algebraic curve 
of the first kind and the topological structure of the curve is 
directly related to the linkage type such as Grashof, non-Grashof, 
foldable linkages (Ge and McCarthy, 1991; Chase and Mirth, 
1993). 

5 Algebraic Motion Approximation 
In the image space 2, the kinematic problem of algebraic motion 

approximation becomes a geometric problem of curve fitting in 2. 
In this section, we discuss the following three problems related to 
algebraic motion approximation: 

1. Approximation of a given spherical four-bar motion with a 
NURBS motion; 

2. Approximation of a NURBS motion with a spherical four-
bar motion; 

3. Constrained NURBS motion approximation. The NURBS 
motion is required to fit a set of given spherical displace
ments while maintaining the kinematic structure of a spher
ical four-bar motion. 

All three problems can be solved as curve-fitting problems in the 
Image Space 2 . 

Essential to the motion approximation process is the estimation 
of the approximation error between the NURBS motion and the 
four-bar motion. There are two ways to estimate the error in the 
image space 2. One is to calculate a sequence of points on the 
B-spline quaternion curve and then estimate the normal distance 
from each point to the image curve of a spherical four-bar motion. 
Calculation of a sequence of points on a B-spline curve is a routine 
task in computer graphics for rendering the curve. It can be done 
efficiently and reliably. The problem of calculating the normal 
distance from a point to the image curve is more challenging but 
has been effectively solved by Ravani and Roth (1983, 1984). The 
resulting algebraic curve-fitting technique has been refined and 
extended by Bodduluri and McCarthy (1992), Ge and Ravani 
(1993), and Larochelle and McCarthy (1994). 

Another way to estimate the approximation error is to generate 

spherical four-bar. This problem can be solved with a number of 
NURBS curve fitting techniques in CAGD including interpolation 
and approximation (see Chapter 9 of Piegl and Tiller, 1995). 

For the second problem, we use a NURBS motion to plan a 
desired motion to include global properties such as a Grashof 
linkage or to eliminate order or branch defect problems. Liu and 
Angeles (1992a, 1992b) were probably the first who used spline 
curves to plan input-output curves for optimization of function 
generating mechanisms. Since the topological structure of an al
gebraic quaternion curve of a spherical four-bar motion has been 
classified and has been shown to be directly related the linkage 
type, one can plan a NURBS motion to capture desired topological 
structure of a desired four-bar motion. After a B-spline quaternion 
curve has been planned, one can obtain an approximating algebraic 
quaternion curve using the curve-fitting technique developed by 
Ravani and Roth and refined by McCarthy, Bodduluri, and Laro
chelle. 

The quality of the above approximation is expected to be de
pendent on the shape of the given NURBS spherical motion. This 
is because while NURBS curves are free-form curves that can be 
used to model any curve shape, the image curve of a spherical 
four-bar is constrained by the kinematic structure of a four-bar 
closed-chain. This gives rise to the third problem in algebraic 
motion approximation, i.e. how to fit a small number of data points 
with a NURBS motion while maintaining the kinematic constraints 
of a four-bar motion. This problem may be solved by first finding 
a NURBS motion that fits the given data with more control points 
than necessary and then determining the extra control points such 
that the final NURBS curve fits the kinematic constraints of a 
four-bar motion. 

We now present an example that demonstrates the feasibility of 
our approach. First, we synthesize a spherical four-bar that ap
proximates ten coupler positions. The resulting linkage is a non-
Grashof double rocker with an average position error of 0.0039 
and is shown in Fig. 1. We then used a NURBS motion to 
interpolate the 10 coupler positions and generated 37 coupler 
positions on the NURBS motion and designed a mechanism for 
these 37 positions. The resulting mechanism, shown in Fig. 2, is a 
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Fig. 1 A spherical four-bar linicage that approximates a set of 10 spher
ical displacements 

Fig. 2 A spherical four-bar linkage that approximates a set of 37 spher
ical displacements 

Table 1 Spherical 4R synthesis: designing results 

Mechanism Link Parameters 

Link 

DRIVING 

COUPLER 

DRIVEN 

FIXED 

Length (deg) 

10 Positions 

141.57 

125.15 

44.12 

67.76 

37 Positions 

39.55 

100.84 

34.91 

96.11 

non-Grashof double rocker with an average position error of 
0.0062. Link lengths for both solutions are listed in Table 1. Note 
that by examining the coupler curve shown in Fig. 1 we see that the 
10 position solution mechanism suffers from order defect (the 
positions are reached in the order: 1-6, 10, 9, 8, 7). However, the 
37 position solution mechanism does not suffer from order defect. 
The additional 27 positions may be viewed as nine sets of 3 
positions, each of these sets being used to describe the desired 
coupler motion between two of the original positions. For exam
ple, in the 37 position case, positions 2-4 describe the desired 
motion from position 1 to position 2 of the 10 original positions. 
The result is the elimination of the order defect in this example. 

Conclusions 
In this paper we presented a framework for combining recent 

developments in the fields of Computer Aided Geometric Design 

with classical kinematic geometry of spherical motions and mech
anisms to study the problem of spherical motion approximation 
from a computational geometric viewpoint. A quaternion-based 
representation of spherical displacements is used to transform the 
kinematic problem of motion synthesis into a geometric problem 
of curve design. In this way, algebraic motions of spherical mech
anisms are represented by algebraic quaternion curves and 
NURBS spherical motions are represented by B-spline quaternion 
curves. The problem of algebraic motion approximation is studied 
as that of algebraic curve approximation in the space of quater
nions. The initial ideas presented here forms a basis for future 
research in developing computational-geometric methods for 
mechanism design and analysis. 
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